Inexact search directions in interior point methods for very large scale optimization

Jacek Gondzio

Email: J.Gondzio@ed.ac.uk
URL: http://www.maths.ed.ac.uk/~gondzio/

Outline

- Motivation: Make IPMs faster
- Inexact Newton directions
- Krylov subspace methods
- Preconditioner is a must
- Theory
- Difficult problems
- Quadratic Assignment
- Quantum Information
- Computational results
- Conclusions

Campinas, April 2015

Brazil 2014 view of LP/QP:

How to solve LP/QP problems?
If we asked Neymar Jr, the likely answer would be:
"go through the interior of the polytope".
Campinas, April 2015

Objective: Accelerate IPMs for LO/QO

We know that IPMs converge in

- theory: $\mathcal{O}(\sqrt{n} \log (1 / \varepsilon))$ iterations
- practice: $\mathcal{O}(\log n \log (1 / \varepsilon))$ iterations
but the per-iteration cost may be high.
Redesign IPMs:
- make a single iteration as fast as possible replace exact Newton Method with inexact Newton Method
- work in matrix-free and limited-memory regime

Campinas, April 2015

Splitting ("Simplex-type") Preconditioner

Oliveira, PhD Thesis, Rice University, 1997
Oliveira \& Sorensen, Linear Algebra and its Applications 394 (2005) 1-24.
O, OS show that all preconditioners for the NE have an equivalent for the $A S$ but the opposite is not true.
\rightarrow it is better to precondition AS
\rightarrow guess the basis matrix.
Al-Jeiroudi, G. \& Hall, Optimization Methods and Software 23 (2008) 345-363.
Al-Jeiroudi \& G., J. of Optimization Theory and Applications 141 (2009) 231-247.
Campinas, April 2015

Many people use iterative methods in IPMs...
Adler et al. (1989a,b)
Karmarkar and Ramakrishnan (1991)
Gill et al. (1992) (indefinite systems)
Resende and Veiga (1993) (network flows)
Oliveira (1997)
Freund and Jarre (1997)
Lukšan and Vlček (1998)
Bellavia (1998)
Mizuno and Jarre (1999)
Baryamureeba, Steihaug and Zhang (1999)
Castro (2000) (network flows)
Wang and O'Leary (2000)
Bergamaschi and Zilli (2000)
Campinas, April 2015

Iterative Methods
Normal Equations or Augmented System:

- NE is positive definite: use conjugate gradients;
- AS is indefinite: use BiCGSTAB, GMRES, QMR;
G. \& Toraldo (eds.),

Comp. Optimization \& Appls, 36 (2007), No 2/3. Special issue on "Linear Algebra in Interior P. Methods", 8 out of 10 papers about iterative methods.
D'Apuzzo, De Simone \& di Serafino, Comp. Optimization \& Appls, 45 (2010) No 2. Survey on lin. algebra in interior p. methods.

Campinas, April 2015

LO \& QO Problems

$$
\begin{aligned}
\min & c^{T} x+\frac{1}{2} x^{T} Q x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

where $A \in \mathcal{R}^{m \times n}$ has full row rank and $Q \in \mathcal{R}^{n \times n}$ is symmetric positive semidefinite. m and n may be large.

Assumption: A and Q are "operators" $A \cdot u, A^{T} \cdot v, Q \cdot u$
Expectation: Low complexity of these operations

Campinas, April 2015

Applications: LPs, QPs constructed implicitly

- problems generated by an algebraic mod. language
- problems too large to be stored
(but generated by some "simple" process)
- LP relaxations of combinatorial (integer) problems
- sparse approximations (compressed sensing)

Assumption: A and Q as "operators" $A \cdot u, A^{T} \cdot v, Q \cdot u$
Expectation: Low complexity of these operations

The First Order Optimality Conditions

$$
\begin{aligned}
A x & =b, \\
-Q x+A^{T} y+s & =c, \\
X S e & =\mu e, \\
(x, s) & >0 .
\end{aligned}
$$

Assume primal-dual feasibility:

$$
A x=b \quad \text { and } \quad-Q x+A^{T} y+s=c
$$

Apply Newton Method to the FOC

$$
\left[\begin{array}{rrr}
A & 0 & 0 \\
-Q & A^{T} & I \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{l}
b-A x \\
c-A^{T} y-s+Q x \\
\sigma \mu e-X S e
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\xi
\end{array}\right]
$$

Campinas, April 2015

Central Path:

A set of all solutions to the optimality conds for $\mu>0$.

Path Following Method:

Stay in the neighbourhood (of the central path)

$$
\begin{aligned}
\mathcal{N}_{2}(\theta) & :=\left\{(x, y, s) \in \mathcal{F}^{0}:\|X S e-\mu e\|_{2} \leq \theta \mu\right\} \\
\mathcal{N}_{-\infty}(\gamma) & :=\left\{(x, y, s) \in \mathcal{F}^{0}: x_{i} s_{i} \geq \gamma \mu\right\} \\
\mathcal{N}_{S}(\gamma) & :=\left\{(x, y, s) \in \mathcal{F}^{0}: \gamma \mu \leq x_{i} s_{i} \leq(1 / \gamma) \mu\right\}
\end{aligned}
$$

where
$\mathcal{F}^{0}:=\left\{(x, y, s): c-A^{T} y-s+Q x=0, A x=b, x, s>0\right\}$.
Campinas, April 2015

Standard complexity result

Let $\epsilon>0$ be the required accuracy of the optimal sol., that is, we stop when $\mu^{k} \leq \epsilon$.

The (short-step, feasible) IPM operates in $\mathcal{N}_{2}(\theta)$ and finds the ϵ-accurate solution after at most

$$
K=\mathcal{O}(\sqrt{n} \ln (1 / \epsilon))
$$

iterations.
The (long-step, feasible) IPM operates in $\mathcal{N}_{S}(\gamma)$ and finds the ϵ-accurate solution after at most

$$
K=\mathcal{O}(\boldsymbol{n} \ln (1 / \epsilon))
$$

iterations.
Campinas, April 2015

Exact Newton Method

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
-Q & A^{T} & I \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\xi
\end{array}\right] .
$$

Inexact Newton Method

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
-Q & A^{T} & I \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\xi+r
\end{array}\right]
$$

allows for an error in the (linearized) complementarity condition only.

Campinas, April 2015

General Assumption

The residual \boldsymbol{r} in the inexact Newton Method satisfies:

$$
\|\boldsymbol{r}\| \leq \delta\|\boldsymbol{\xi}\|,
$$

where $\delta \in(0,1]$.

What happens to the complexity result?

Campinas, April 2015

Short-step (Feasible) Algorithm

Stay in the small neighbourhood of the central path

$$
\mathcal{N}_{2}(\theta):=\left\{(x, y, s) \in \mathcal{F}^{0}:\|X S e-\mu e\|_{2} \leq \theta \mu\right\}
$$

Use $\sigma=\left(1-\frac{0.1}{\sqrt{n}}\right)$.
Set $\delta=0.3$ to achieve the reduction:

$$
\bar{\mu}=\left(1-\frac{0.02}{\sqrt{n}}\right) \mu .
$$

\Rightarrow Convergence in $\mathcal{O}(\sqrt{n} \ln (1 / \epsilon))$ iterations.

Long-step (Feasible) Algorithm

Stay in the large neighbourhood of the central path

$$
\mathcal{N}_{S}(\gamma):=\left\{(x, y, s) \in \mathcal{F}^{0}: \gamma \mu \leq x_{i} s_{i} \leq(1 / \gamma) \mu\right\}
$$

Use $\sigma=0.5$.
Set $\delta=0.05$ to achieve the reduction:

$$
\bar{\mu}=\left(1-\frac{0.002}{n}\right) \mu .
$$

\Rightarrow Convergence in $\mathcal{O}(n \ln (1 / \epsilon))$ iterations.

Theorem

Suppose the algorithm uses the inexact Newton Method.

- If $(x, y, s) \in \mathcal{N}_{2}(\theta)$ and $\sigma=\left(1-\frac{0.1}{\sqrt{n}}\right), \delta=0.3$ then the algorithm converges in at most

$$
K=\mathcal{O}(\sqrt{n} \ln (1 / \epsilon))
$$

iterations.

- If $(x, y, s) \in \mathcal{N}_{S}(\gamma)$ and $\sigma=0.5, \delta=0.05$ then the algorithm converges in at most

$$
K=\mathcal{O}(\boldsymbol{n} \ln (1 / \epsilon))
$$

iterations.

Proof (key ideas)

For the Short-step Algorithm, show that the error

$$
\|\Delta X \Delta S e\|=\mathcal{O}(\mu) .
$$

Use the full Newton step.
The proof requires 3 pages of maths.
For the Long-step Algorithm, show that the error

$$
\|\Delta X \Delta S e\|=\mathcal{O}(n \mu) .
$$

Use the damped Newton step with $\alpha=\mathcal{O}(1 / n)$. The proof requires 5 pages of maths.

JG, Convergence Analysis of an Inexact Feasible IPM for Convex QP, SIAM J. on Optimization 23 (2013) No 3, pp. 1510-1527.
Campinas, April 2015

Conclusion

Replace the Exact Newton Method with the Inexact Newton Method

Allow for large residual

$$
\|r\| \leq \delta\|\xi\|
$$

The worst-case complexity result remains the same!

Campinas, April 2015

From Theory to Practice

Solve augmented system

$$
\left[\begin{array}{cc}
-Q-\Theta^{-1} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right] .
$$

Use an iterative method with a suitable preconditioner which must work in a matrix-free regime.

A good preconditioner depends on the problem. Finding it may be a challenge.

Campinas, April 2015

Preconditioning

Do it in two steps:

1. Improve the conditioning of the linear system \longrightarrow use primal-dual regularization (bounded condition number of KKT system)
2. Precondition the (easier) system

Augmented System Matrix

Original:

$$
\mathcal{H}=\left[\begin{array}{cc}
-Q-\Theta^{-1} & A^{T} \\
A & 0
\end{array}\right]
$$

and regularized: $\quad \mathcal{H}_{R}=\left[\begin{array}{ccc}-\left(Q+\Theta^{-1}+R_{p}\right) & A^{T} \\ A & R_{d}\end{array}\right]$.

Normal Equation Matrix

Original:

$$
\mathcal{G}=\left(A\left(Q+\Theta^{-1}\right)^{-1} A^{T}\right)
$$

and regularized: $\quad \mathcal{G}_{R}=\left(A\left(Q+\Theta^{-1}+R_{p}\right)^{-1} A^{T}+R_{d}\right)$.
Altman \& JG, Regularized symmetric indefinite systems in IPMs for linear and quadratic optimization, Optim. Methods and Software 11-12 (1999) 275-302.

Campinas, April 2015

Original NE system
$\underbrace{\left(A\left(Q+\Theta^{-1}\right)^{-1} A^{T}\right)}_{\mathcal{G}} \Delta y=g$
Consider a (difficult) LP case: $Q=0 \quad \longrightarrow \mathcal{G}=A \Theta A^{T}$
Theorem. The condition number of \mathcal{G} satisfies:

$$
\kappa(\mathcal{G}) \leq[\kappa(A)]^{2} \cdot \mathcal{O}\left(\mu^{-2}\right) .
$$

Proof:
The largest eigenvalue of $\mathcal{G} \quad \lambda_{\max } \leq \sigma_{m}^{2} \cdot \mathcal{O}\left(\mu^{-1}\right)$
The smallest eigenvalue of $\mathcal{G} \quad \lambda_{\text {min }} \geq \sigma_{1}^{2} \cdot \mathcal{O}(\mu)$
Hence:

$$
\kappa(\mathcal{G}) \leq[\kappa(A)]^{2} \cdot \mathcal{O}\left(\mu^{-2}\right)
$$

Campinas, April 2015

Regularized NE system
$\underbrace{\left(A\left(Q+\Theta^{-1}+R_{p}\right)^{-1} A^{T}+R_{d}\right)}_{\mathcal{G}_{R}} \Delta y=g$
Theorem. Assume: $\quad R_{p}=\gamma^{2} I_{n}$ and $R_{d}=\delta^{2} I_{m}$.
The condition number of \mathcal{G}_{R}

$$
\kappa\left(\mathcal{G}_{R}\right) \leq \frac{\sigma_{m}^{2} \cdot \gamma^{-2}+\delta^{2}}{\delta^{2}}=1+\frac{\sigma_{m}^{2}}{\gamma^{2} \delta^{2}} \approx \frac{\sigma_{m}^{2}}{\gamma^{2} \delta^{2}} .
$$

is bounded and independent of μ.

Campinas, April 2015

Proof:

Recall the regularized NE system:
$\underbrace{\left(A\left(Q+\Theta^{-1}+R_{p}\right)^{-1} A^{T}+R_{d}\right)}_{\mathcal{G}_{R}} \Delta y=g$
and the assumptions: $\quad R_{p}=\gamma^{2} I_{n}$ and $R_{d}=\delta^{2} I_{m}$.
The largest eigenvalue of $\mathcal{G}_{R} \quad \lambda_{\max } \leq \sigma_{m}^{2} \cdot \gamma^{-2}+\delta^{2}$ The smallest eigenvalue of $\mathcal{G}_{R} \quad \lambda_{\text {min }} \geq \delta^{2}$

Hence

$$
\kappa\left(\mathcal{G}_{R}\right) \leq \frac{\sigma_{m}^{2} \cdot \gamma^{-2}+\delta^{2}}{\delta^{2}}=1+\frac{\sigma_{m}^{2}}{\gamma^{2} \delta^{2}} \approx \frac{\sigma_{m}^{2}}{\gamma^{2} \delta^{2}}
$$

Campinas, April 2015

Summary: Eigenvalues of NE

Regularizations:
$\gamma^{2} \leq R_{p j} \leq \Gamma^{2}, \forall j=1 . . n, \quad$ and $\quad \delta^{2} \leq R_{d i} \leq \Delta^{2}, \forall i=1 . . m$.
$G \underset{\lambda_{\lambda_{1}}}{\stackrel{1}{+}}$
$\begin{array}{cll}\mathrm{G}_{\mathrm{R}} & \\ & \\ & \\ & \tilde{\lambda}_{1} & \tilde{\lambda}_{\mathrm{m}}\end{array}$

Campinas, April 2015

CG's rate of convergence

$$
e^{k+1} \leq \frac{\kappa^{1 / 2}-1}{\kappa^{1 / 2}+1} e^{k}
$$

For regularized NE system, we have:

$$
\frac{\kappa^{1 / 2}-1}{\kappa^{1 / 2}+1} \approx \frac{\frac{\sigma_{m}}{\gamma \delta}-1}{\frac{\sigma_{m}}{\gamma \delta}+1}=\frac{1-\frac{\gamma \delta}{\sigma_{m}}}{1+\frac{\gamma \delta}{\sigma_{m}}} \approx 1-2 \frac{\gamma \delta}{\sigma_{m}} .
$$

now: precondition the regularized system

Campinas, April 2015

Decompose the regularized NE system

Use diagonal pivoting to compute

$$
\mathcal{G}_{R}=\left[\begin{array}{ll}
L_{11} & \\
L_{21} & I
\end{array}\right]\left[\begin{array}{cc}
D_{L} & \\
& S
\end{array}\right]\left[\begin{array}{cc}
L_{11}^{T} & L_{21}^{T} \\
& I
\end{array}\right],
$$

where $L=\left[\begin{array}{l}L_{11} \\ L_{21}\end{array}\right]$ is a trapezoidal matrix:
(the first k columns of Cholesky factor of \mathcal{G}_{R});
$S \in \mathcal{R}^{(m-k) \times(m-k)}$ is the corresp. Schur complement.
Order diagonal elements of D_{L} and $D_{S}=\operatorname{diag}(S)$:

$$
\underbrace{d_{1} \geq d_{2} \geq \cdots \geq d_{k}}_{D_{L}} \geq \underbrace{d_{k+1} \geq d_{k+2} \geq \cdots \geq d_{m}}_{D_{S}} .
$$

Campinas, April 2015

Preconditioner

Use the decomposition

$$
\mathcal{G}_{R}=\left[\begin{array}{ll}
L_{11} & \\
L_{21} & I
\end{array}\right]\left[\begin{array}{ll}
D_{L} & \\
& \boldsymbol{S}
\end{array}\right]\left[\begin{array}{cc}
L_{11}^{T} & L_{21}^{T} \\
& I
\end{array}\right]
$$

and precondition \mathcal{G}_{R} with

$$
P=\left[\begin{array}{ll}
L_{11} & \\
L_{21} & I
\end{array}\right]\left[\begin{array}{ll}
D_{L} & \\
& D_{S}
\end{array}\right]\left[\begin{array}{cc}
L_{11}^{T} & L_{21}^{T} \\
& I
\end{array}\right],
$$

where D_{S} is a diagonal of \boldsymbol{S}.
Do not compute S.
Update only its diagonal.
Campinas, April 2015

Preconditioner: Partial Cholesky of NE system

$$
\begin{gathered}
\mathcal{G}_{R}=\left(A\left(Q+\Theta^{-1}+R_{p}\right)^{-1} A^{T}+R_{d}\right) \approx L D_{L} L^{T}+D_{S} \\
L D_{L} L^{T}+D_{S}=L_{L} \cdot \nabla \cdot \square
\end{gathered}
$$

- low rank matrix L: $k \ll m$
- D_{L} contains k largest pivots of \mathcal{G}_{R}

JG, Matrix-Free Interior Point Method,
Computational Optimization and Applications, vol. 51 (2012) 457-480.
Campinas, April 2015

Matrix-Free Implementation

To build the preconditioner we need only:

- a complete diagonal of $A \Theta A^{T} \rightarrow d_{i i}=r_{i}^{T} \Theta r_{i}$
- a column i of $A \Theta A^{T}$

$$
\rightarrow(A \Theta) \cdot r_{i}
$$

both operations are easy if we access r_{i}^{T} (row i of A).
Campinas, April 2015

Two examples of difficult LPs

- Quadratic Assignment Problem, Nugent et al. with Ed Smith and J.A.J. Hall
- Quantum Information Problems with Gruca, Hall, Laskowski and Żukowski
use Matrix-Free IPM

Campinas, April 2015

Quadratic Assignment Problem, Nugent et al. LP relaxations of size $m \approx 2 \times N^{3}$ and $n \approx 8 \times N^{3}$ joint work with Ed Smith and J.A.J. Hall

Prob	Cplex 11.0.1				mf-IPM					
	Simplex its time		Barrier its time		rank=200		rank $=500$			
			its	time	its	time				
nug12	96148	187			13	10	7	2	7	15
nug15	387873	2451	16	71	7	10	7	34		
nug20	2.9-10	79451	18	1034	6	35	5	122		
nug30		>28days		OoM	5	1272	5	4465		

mf-IPM solves large problems $N=40,50, \ldots, 100$ in hours
Campinas, April 2015

Quantum Information Problems

- model Quantum Entanglement (quBit, quNit)
- need solving a sequence of LPs

Features

- very sparse A
$\longrightarrow \quad$ inexpensive MatVec operation
- completely dense $A A^{T}$
$\longrightarrow \quad$ factorization of AS or NE is prohibitive

Campinas, April 2015

Inexact directions in IPM

Einstein-Podolsky-Rosen Paradox, 1935

Following Wikipedia:
"[EPR paradox] refutes the dichotomy that either the measurement of a physical quantity in one system must affect the measurement of a physical quantity in another, spatially separate, system or the description of reality given by a wave function must be incomplete."

Quantum Entanglement:

The measurements performed on spatially separated parts of quantum systems may instantaneously influence each other.

Bell, Physics, 1 (1964) proposed inequalities which allow to capture situations when this happens.

Campinas, April 2015

Quantum Information Problems

Prob	Cplex 12.0				mf-IPM	
		Simplex		rrier		rank=200
	it	its time	its	time	its	time
4kx4k	5418	80.8	20	15	6	
16kx16k	6277	257	10	399	5	15
64kx64k	2.6-10	${ }^{6} 6 \mathrm{~h} 51 \mathrm{~m}$	-	OoM	8	3 m 22 s
256 kx 256 k		>48	-	OoM	9	28m38s
$1 \mathrm{Mx1M}$		-	-	OoM		1h34m19s
4Mx4M			-	OoM		9h14m49s

JG, Gruca, Hall, Laskowski and Żukowski, Solving LSO Problems Related to Bell's Theorem, J. of Comput and Appl Maths, 263C (2014) 392-404.

Campinas, April 2015

Conclusions

Theory:

The inexact IPM enjoys the same worst-case iteration complexity as the exact IPM.

Computational practice:

Matrix-free IPM solves otherwise intractable problems. It needs:

- $\mathcal{O}(\log n)$ iterations
- with $\mathcal{O}(n z(A))$ cost per iteration
- it involves only MatVec operations.

Campinas, April 2015

Thank You!

Inexact Newton, Matrix-Free IPM:

JG, Convergence Analysis of an Inexact Feasible IPM for Convex QP,
SIAM J. on Optimization 23 (2013) pp. 1510-1527.
JG, Matrix-Free Interior Point Method, Computational Optimization and Applications, 51 (2012) 457-480.

JG, Interior Point Methods 25 Years Later, European Journal of Operational Research, 218 (2012) 587-601.

Campinas, April 2015

13th EUROPT Workshop
on Advances in Continuous Optimization

EUROPT, Edinburgh, 8-10 July 2015
http://www.maths.ed.ac.uk/hall/EUROPT15/index.html

EURO, Glasgow, 12-16 July 2015

Campinas, April 2015

Augmented system

$$
\left[\begin{array}{cc}
-Q-\Theta^{-1} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{c}
-X^{-1} \xi \\
0
\end{array}\right] .
$$

Inexact solution $(\Delta \tilde{x}, \Delta \tilde{y})$ satisfies

$$
\left[\begin{array}{cc}
-Q-\Theta^{-1} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta \tilde{x} \\
\Delta \tilde{y}
\end{array}\right]=\left[\begin{array}{c}
-X^{-1} \xi+r_{x} \\
r_{y}
\end{array}\right]
$$

Using

$$
-X^{-1} \xi+r_{x}=-X^{-1}(\xi+\mathbf{r})
$$

the practical stopping criteria for an iterative method is:

$$
r_{y}=0 \quad \text { and } \quad\|r\|=\left\|X r_{x}\right\| \leq \delta\|\xi\| .
$$

Campinas, April 2015

