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Brazil 2014 view of LP/QP:

How to solve LP/QP problems?

If we asked Neymar Jr, the likely answer would be:
“go through the interior of the polytope”.
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Inexact directions in IPM

Objective: Accelerate IPMs for LO/QO

We know that IPMs converge in

• theory: O(√n log(1/ε)) iterations

• practice: O(log n log(1/ε)) iterations

but the per-iteration cost may be high.

Redesign IPMs:

• make a single iteration as fast as possible

replace exact Newton Method
with inexact Newton Method

• work in matrix-free and limited-memory regime
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Splitting (“Simplex-type”) Preconditioner

Oliveira, PhD Thesis, Rice University, 1997
Oliveira & Sorensen, Linear Algebra and its Ap-
plications 394 (2005) 1-24.

O, OS show that all preconditioners for the NE have
an equivalent for the AS but the opposite is not true.

→ it is better to precondition AS
→ guess the basis matrix.

Al-Jeiroudi, G. & Hall, Optimization Methods and
Software 23 (2008) 345-363.
Al-Jeiroudi & G., J. of Optimization Theory and
Applications 141 (2009) 231-247.
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Many people use iterative methods in IPMs...

Adler et al. (1989a,b)
Karmarkar and Ramakrishnan (1991)
Gill et al. (1992) (indefinite systems)
Resende and Veiga (1993) (network flows)
Oliveira (1997)
Freund and Jarre (1997)
Lukšan and Vlček (1998)
Bellavia (1998)
Mizuno and Jarre (1999)
Baryamureeba, Steihaug and Zhang (1999)
Castro (2000) (network flows)
Wang and O’Leary (2000)
Bergamaschi and Zilli (2000)
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Iterative Methods

Normal Equations or Augmented System:

• NE is positive definite: use conjugate gradients;

• AS is indefinite: use BiCGSTAB, GMRES, QMR;

G. & Toraldo (eds.),
Comp. Optimization & Appls, 36 (2007), No 2/3.
Special issue on “Linear Algebra in Interior P. Methods”,
8 out of 10 papers about iterative methods.

D’Apuzzo, De Simone & di Serafino,
Comp. Optimization & Appls, 45 (2010) No 2.
Survey on lin. algebra in interior p. methods.
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LO & QO Problems

min cTx+ 1
2 x

TQx

s.t. Ax = b,

x ≥ 0,

where A ∈ Rm×n has full row rank

and Q ∈ Rn×n is symmetric positive semidefinite.

m and n may be large.

Assumption: A and Q are “operators” A ·u, AT·v, Q ·u

Expectation: Low complexity of these operations
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Applications: LPs, QPs constructed implicitly

• problems generated by an algebraic mod. language

• problems too large to be stored
(but generated by some “simple” process)

• LP relaxations of combinatorial (integer) problems

• sparse approximations (compressed sensing)

Assumption: A and Q as “operators” A · u, AT· v, Q · u

Expectation: Low complexity of these operations
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The First Order Optimality Conditions

Ax = b,

−Qx+ ATy+ s = c,
XSe = µe,

(x, s) > 0.

Assume primal-dual feasibility:

Ax = b and −Qx+ ATy+ s = c

Apply Newton Method to the FOC





A 0 0
−Q AT I
S 0 X



 ·





∆x
∆y
∆s



 =





b− Ax

c− ATy − s+Qx
σµe−XSe



 =





0
0
ξ



 .
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Central Path:

A set of all solutions to the optimality conds for µ > 0.

Path Following Method:

Stay in the neighbourhood (of the central path)

N2(θ) := {(x, y, s) ∈ F0 : ‖XSe− µe‖2 ≤ θµ}
N−∞(γ) := {(x, y, s) ∈ F0 : xisi ≥ γµ}

NS(γ) := {(x, y, s) ∈ F0 : γµ ≤ xisi ≤ (1/γ)µ}
where

F0 := {(x, y, s) : c− ATy − s+Qx = 0, Ax = b, x, s > 0}.
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Standard complexity result

Let ǫ > 0 be the required accuracy of the optimal sol.,
that is, we stop when µk ≤ ǫ.

The (short-step, feasible) IPM operates in N2(θ) and
finds the ǫ-accurate solution after at most

K = O(√n ln(1/ǫ))

iterations.

The (long-step, feasible) IPM operates in NS(γ) and
finds the ǫ-accurate solution after at most

K = O(n ln(1/ǫ))

iterations.
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Exact Newton Method




A 0 0
−Q AT I
S 0 X



 ·





∆x
∆y
∆s



 =





0
0
ξ



 .

Inexact Newton Method




A 0 0
−Q AT I
S 0 X



 ·





∆x
∆y
∆s



 =





0
0

ξ+ r





allows for an error in the (linearized) complementarity
condition only.
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General Assumption

The residual r in the inexact Newton Method satisfies:

‖r‖ ≤ δ‖ξ‖,

where δ ∈ (0,1].

What happens to the complexity result?
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Short-step (Feasible) Algorithm

Stay in the small neighbourhood of the central path

N2(θ) := {(x, y, s) ∈ F0 : ‖XSe− µe‖2 ≤ θµ}

Use σ = (1− 0.1√
n
).

Set δ = 0.3 to achieve the reduction:

µ̄ = (1−0.02√
n
)µ.

⇒ Convergence in O(√n ln(1/ǫ)) iterations.
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Long-step (Feasible) Algorithm

Stay in the large neighbourhood of the central path

NS(γ) := {(x, y, s) ∈ F0 : γµ ≤ xisi ≤ (1/γ)µ}

Use σ = 0.5.
Set δ = 0.05 to achieve the reduction:

µ̄ = (1−0.002
n

)µ.

⇒ Convergence in O(n ln(1/ǫ)) iterations.
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Theorem

Suppose the algorithm uses the inexactNewtonMethod.

• If (x, y, s) ∈ N2(θ) and σ = (1− 0.1√
n
), δ = 0.3 then

the algorithm converges in at most

K = O(√n ln(1/ǫ))

iterations.

• If (x, y, s) ∈ NS(γ) and σ = 0.5 , δ = 0.05 then the
algorithm converges in at most

K = O(n ln(1/ǫ))

iterations.
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Proof (key ideas)

For the Short-step Algorithm, show that the error

‖∆X∆Se‖ = O(µ).
Use the full Newton step.
The proof requires 3 pages of maths.

For the Long-step Algorithm, show that the error

‖∆X∆Se‖ = O(nµ).
Use the damped Newton step with α = O(1/n).
The proof requires 5 pages of maths.

JG, Convergence Analysis of an Inexact Feasible IPM
for Convex QP, SIAM J. on Optimization 23 (2013) No
3, pp. 1510-1527.
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Conclusion

Replace the Exact Newton Method

with the Inexact Newton Method

Allow for large residual

‖r‖ ≤ δ‖ξ‖

The worst-case complexity result
remains the same!

Campinas, April 2015 19



Inexact directions in IPM

From Theory to Practice
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Solve augmented system

[

−Q−Θ−1 AT

A 0

] [
∆x
∆y

]

=
[
f
g

]

.

Use an iterative method with a suitable preconditioner
which must work in a matrix-free regime.

A good preconditioner depends on the problem.
Finding it may be a challenge.
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Preconditioning

Do it in two steps:

1. Improve the conditioning of the linear system
−→ use primal-dual regularization
(bounded condition number of KKT system)

2. Precondition the (easier) system
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Augmented System Matrix

Original: H =
[

−Q−Θ−1 AT

A 0

]

and regularized: HR =
[

−(Q+Θ−1+ Rp) AT

A Rd

]

.

Normal Equation Matrix

Original: G = (A(Q+Θ−1)−1AT )

and regularized: GR = (A(Q+Θ−1+Rp)−1AT +Rd).

Altman & JG, Regularized symmetric indefinite sys-
tems in IPMs for linear and quadratic optimization,
Optim. Methods and Software 11-12 (1999) 275-302.
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Original NE system
(A(Q+Θ−1)−1AT )
︸ ︷︷ ︸

G
∆y=g

Consider a (difficult) LP case: Q = 0 −→ G = AΘAT

Theorem. The condition number of G satisfies:

κ(G) ≤ [κ(A)]2 · O(µ−2).

Proof:
The largest eigenvalue of G λmax ≤ σ2m · O(µ−1)

The smallest eigenvalue of G λmin ≥ σ21 · O(µ)

Hence: κ(G) ≤ [κ(A)]2 · O(µ−2)
✷
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Regularized NE system

(A(Q+Θ−1+Rp)−1AT +Rd)︸ ︷︷ ︸

GR

∆y=g

Theorem. Assume: Rp = γ2In and Rd = δ2Im.

The condition number of GR

κ(GR) ≤
σ2m · γ−2+ δ2

δ2
= 1+

σ2m
γ2δ2

≈ σ2m
γ2δ2

.

is bounded and independent of µ.
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Proof:

Recall the regularized NE system:

(A(Q+Θ−1+Rp)−1AT +Rd)︸ ︷︷ ︸

GR

∆y=g

and the assumptions: Rp = γ2In and Rd = δ2Im.

The largest eigenvalue of GR λmax ≤ σ2m · γ−2+ δ2

The smallest eigenvalue of GR λmin ≥ δ2

Hence

κ(GR) ≤
σ2m · γ−2+ δ2

δ2
= 1+

σ2m
γ2δ2

≈ σ2m
γ2δ2

✷
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Summary: Eigenvalues of NE

Regularizations:

γ2 ≤ Rpj ≤ Γ2, ∀j = 1..n, and δ2 ≤ Rdi ≤ ∆2, ∀i = 1..m.

λ1

λ1

0

0

λm

λm

G

G

R ~ ~

Campinas, April 2015 27



Inexact directions in IPM

CG’s rate of convergence

ek+1 ≤ κ1/2 − 1

κ1/2+ 1
ek

For regularized NE system, we have:

κ1/2 − 1

κ1/2+ 1
≈

σm
γδ − 1
σm
γδ + 1

=
1− γδ

σm

1 + γδ
σm

≈ 1− 2
γδ

σm
.

now: precondition the regularized system
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Decompose the regularized NE system

Use diagonal pivoting to compute

GR =
[
L11
L21 I

] [
DL

S

][

LT
11 LT

21
I

]

,

where L =
[
L11
L21

]

is a trapezoidal matrix:

(the first k columns of Cholesky factor of GR);
S ∈ R(m−k)×(m−k) is the corresp. Schur complement.

Order diagonal elements of DL and DS = diag(S):

d1 ≥ d2 ≥ · · · ≥ dk︸ ︷︷ ︸

DL

≥ dk+1 ≥ dk+2 ≥ · · · ≥ dm
︸ ︷︷ ︸

DS

.
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Preconditioner

Use the decomposition

GR =
[
L11
L21 I

] [
DL

S

][

LT
11 LT

21
I

]

and precondition GR with

P =
[
L11
L21 I

] [
DL

DS

][

LT
11 LT

21
I

]

,

where DS is a diagonal of S.

Do not compute S.
Update only its diagonal.
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Preconditioner: Partial Cholesky of NE system

GR = (A(Q+Θ−1+Rp)−1AT + Rd) ≈ LDLL
T +DS

LDLL
T +DS = +..

L L T

• low rank matrix L: k ≪ m

• DL contains k largest pivots of GR

JG, Matrix-Free Interior Point Method,
Computational Optimization and Applications,
vol. 51 (2012) 457–480.
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Matrix-Free Implementation

AΘAT =

row i of A

To build the preconditioner we need only:

• a complete diagonal of AΘAT → dii = rTi Θ ri

• a column i of AΘAT → (AΘ) · ri
both operations are easy if we access rTi (row i of A).
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Two examples of difficult LPs

• Quadratic Assignment Problem, Nugent et al.
with Ed Smith and J.A.J. Hall

• Quantum Information Problems
withGruca, Hall, Laskowski and Żukowski

use Matrix-Free IPM
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Quadratic Assignment Problem, Nugent et al.
LP relaxations of size m ≈ 2×N3 and n ≈ 8×N3

joint work with Ed Smith and J.A.J. Hall

Prob Cplex 11.0.1 mf-IPM

Simplex Barrier rank=200 rank=500
its time its time its time its time

nug12 96148 187 13 10 7 2 7 15
nug15 387873 2451 16 71 7 10 7 34
nug20 2.9·106 79451 18 1034 6 35 5 122
nug30 ? >28days - OoM 5 1272 5 4465

mf-IPM solves large problemsN = 40,50, . . . ,100 in hours
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Quantum Information Problems

• model Quantum Entanglement (quBit, quNit)

• need solving a sequence of LPs

Features

• very sparse A

−→ inexpensive MatVec operation

• completely dense AAT

−→ factorization of AS or NE is prohibitive
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Einstein-Podolsky-Rosen Paradox, 1935

Following Wikipedia:
“[EPR paradox] refutes the dichotomy that either the
measurement of a physical quantity in one system must
affect the measurement of a physical quantity in another,
spatially separate, system or the description of reality
given by a wave function must be incomplete.”

Quantum Entanglement:
The measurements performed on spatially separated parts
of quantum systems may instantaneously influence each
other.

Bell, Physics, 1 (1964) proposed inequalities which al-
low to capture situations when this happens.
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Quantum Information Problems

Prob Cplex 12.0 mf-IPM

Simplex Barrier rank=200
its time its time its time

4kx4k 5418 0.8 20 15 6 4
16kx16k 62772 57 10 399 5 15
64kx64k 2.6·106 6h51m - OoM 8 3m22s
256kx256k >48h - OoM 9 28m38s
1Mx1M - - OoM 9 1h34m19s
4Mx4M - - OoM 10 9h14m49s

JG, Gruca, Hall, Laskowski and Żukowski,
Solving LSO Problems Related to Bell’s Theorem,
J. of Comput and Appl Maths, 263C (2014) 392–404.
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Conclusions

Theory:

The inexact IPM enjoys the same worst-case iteration
complexity as the exact IPM.

Computational practice:

Matrix-free IPM solves otherwise intractable problems.
It needs:

• O(log n) iterations

• with O(nz(A)) cost per iteration

• it involves only MatVec operations.
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Thank You!

Inexact Newton, Matrix-Free IPM:

JG, Convergence Analysis of an Inexact Feasible IPM
for Convex QP,
SIAM J. on Optimization 23 (2013) pp. 1510-1527.

JG, Matrix-Free Interior Point Method,
Computational Optimization and Applications,
51 (2012) 457–480.

JG, Interior Point Methods 25 Years Later,
European Journal of Operational Research,
218 (2012) 587–601.
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13th EUROPT Workshop

on Advances in Continuous Optimization

EUROPT, Edinburgh, 8-10 July 2015

http://www.maths.ed.ac.uk/hall/EUROPT15/index.html

EURO, Glasgow, 12-16 July 2015
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Augmented system
[

−Q−Θ−1 AT

A 0

] [
∆x
∆y

]

=
[
−X−1ξ

0

]

.

Inexact solution (∆x̃,∆ỹ) satisfies
[

−Q−Θ−1 AT

A 0

] [
∆x̃
∆ỹ

]

=
[
−X−1ξ + rx

ry

]

.

Using

−X−1ξ + rx = −X−1(ξ + r)

the practical stopping criteria for an iterative method is:

ry = 0 and ‖r‖ = ‖Xrx‖ ≤ δ‖ξ‖.
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